Green Engineering for Urban Heat Island Mitigation

Jan Kleissl, Neda Yaghoobian, Long Sun, Anthony Dominguez

Mechanical & Aerospace Engineering, UC San Diego

Overview

- Motivation
- Multiscale modeling of urban heat islands (UHI) mitigation measures
 - Single building
 - Building-Building-Canopy Interaction
 - Impact of artificial turf on urban canopy temperatures
 - Neighborhoods
- Wireless sensor networks
 - Dense weather station networks for UHI observation
- Conclusions

Motivation

- Buildings consume 40% of primary energy and 72% of electricity in the US
- UHIs expected to intensity with climate change (US Climate Change Science Program)
- Missing link between single building energy models and city-scale meteorological models
- → Develop multiscale modeling tools and validation datasets for green engineering

Multiscale modeling of UHI mitigation:

The building

\$1.6M

PHILA. (\$3M).

BALTIMORE

Multiscale modeling of UHI mitigation: Building – Canopy – Building

Case study: Artificial Turf

Time (LMST)

Multiscale modeling of UHI mitigation: Neighborhoods

UHI Mitigation measures: all the above

Tools: Large Eddy Simulation, MM5, WRF

Outcomes:

- Reduction in urban air temperatures up to 3K
- Reduction in 1 hr O3 up to 5 ppb

Challenges

- Understanding fundamentals of convective heat transfer in urban environments
- Estimation of indirect thermal effects on urban energy use
- Renewable energy estimation and integration
- Smart grids: real-time control
- → Long-term, dense urban observatories
- → Computation Fluid Dynamics

Long-term, dense urban observatories

Decision Making using Real-time Observations for Environmental Sustainability (DEMROES)

DEMROES meteorological station network at UCSD. Green: rooftop stations, blue: lamppost stations

MAE and BioEng students assembling a DEMROES station

Building HVAC Control with DT-ESPER

HVAC:

- large energy use
- thermal storage
- controllability
- Control strategies
 - Global setpoint adjustment
 - Direct fan / chiller control

Computational Fluid Dynamics

Evaluate strategies to mitigate Urban Heat Islands:

- Computational Fluid Dynamics with radiative heat transfer models
- Model tree shading, reflective roof coatings, artificial turf

Conclusions

- UHI mitigation technologies direct effects are known. Indirect effects are poorly quantified.
- Physics based, multi-scale modeling tools are under development
- Dense urban observatory contributes to optimal and sustainable operation of UCSD facilities
- UCSD is a living laboratory for urban sustainability solutions

Cyberinfrastructure

- Campbell Scientific CR1000 dataloggers sampling 2 sec averaging 5 min
- CSI Loggernet automated downloads every 10 min
- MATLAB loop
 - Reads files
 - Processes, applies calibration, graphs output
 - Sends daily email with battery voltage graph (febootserver)
 - copies files and graphs to webserver (scp)
- Web display
- Files from webserver into SQL database with parser

Evaluation

- Crashproof: matlab & loggernet in startup
- Runs reliably
- MATLAB great for processing, statistics, and graphing
- Disadvantages:
 - Lacking viewer controllable data display
 - Lacking event–detection and alerts
 - SQL and data acquisiton on separate platforms
 - Manual intervention to change file names